

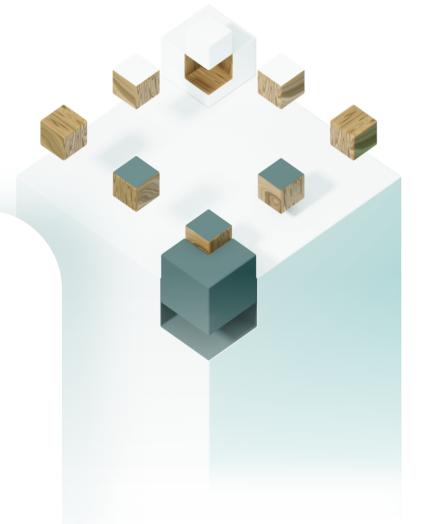
wood.ii #2 (Stuttgart, 2025)

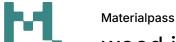
ADRESSE

Quellenstraße 7a 6 70376 Stuttgart Deutschland

EIGENTÜMER

WoodenValley gGmbH


VORBEREITET VON

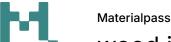

WoodenValley gGmbH

FERTIGSTELLUNGSGRAD

Wie gebaut / as built

30.9.2025

Was ist ein Materialpass?


Dieser Materialpass ist ein Madaster-Produkt, das die Registrierung der Materialien und Produkte eines oder mehrerer Objekte oder eines Teils eines Objektes darstellt. Diese Registrierung basiert auf einer oder mehreren Quelldateien, die vom Benutzer importiert wurden. Diese Quelldateien werden in Abschnitt [2] dieses Dokuments aufgeführt. Die aktuelle Version des Materialpasses, Version 1.0, enthält Ansichten der Material- und Produktmengen innerhalb des sogenannten "Objekt"-Rahmens. Dies bedeutet, dass die Materialien und Produkte, die in den verschiedenen Schichten des Objektes verwendet werden, auf der Grundlage der Klassifizierungskodierung in sieben "Gebäudeschichten" angezeigt werden.

"Abfall ist Material ohne Identität"


- Thomas Rau

Haftungsausschluss

Dieser Materialpass wurde ohne Zutun von (Personal und/oder Angestellten der) Madaster Services B.V. (im Folgenden: "Madaster") und/oder der Madaster Stiftung erstellt und ist das alleinige und ausschließliche Ergebnis von Daten, die vom Benutzer oder im Namen des Benutzers aus den Quelldateien des Benutzers importiert wurden. Die importierten Daten umfassen Daten über Mengen, Materialien sowie die Klassifizierungskodierung. Die verschiedenen Darstellungen von Materialien im Materialpass beruhen auf diesen Daten. Daher basieren alle Informationen im Materialpass zu 100% auf den Daten, die in den vom Benutzer bereitgestellten und bearbeiteten Quelldateien enthalten sind. Die Qualität des Materialpasses hängt daher in vollem Umfang von der Richtigkeit und Vollständigkeit dieser Daten sowie von den folgenden Bedingungen ab: Die korrekte Zuordnung von Materialien und Produkten zu allen Elementen innerhalb des BIM-Modells, das nach .ifc exportiert wurde. Die Aufnahme von Volumen- und Flächenattributen in die Basismengeneigenschaften des BIM-Modells, das nach .ifc exportiert wurde. Das Vorhandensein eines Klassifizierungscodes für alle Elemente innerhalb des BIM-Modells, das nach .ifc exportiert wurde. Die aktivierten Dateien innerhalb der Plattform sind komplementär, ohne sich überschneidende Elemente. Alle angezeigten Werte haben die in den Validierungsattributen der Quelldateien angegebene Genauigkeit. Der Benutzer trägt die volle Verantwortung für die Richtigkeit und Vollständigkeit der Informationen und Daten, die er in die Madaster Plattform eingibt. Folglich kann Madaster in keiner Weise für die falsche und/oder unvollständige und/oder unüberlegte Eingabe der erforderlichen Informationen durch den Benutzer verantwortlich gemacht werden.

Allgemeine Informationen

Objekt

wood.ii #2 (Stuttgart, 2025)

ADRESSE

Quellenstraße 7a 6 70376 Stuttgart Deutschland

BAUJAHR

30.5.2025

BRUTTOGESCHOSSFLÄCHE (BGF)

NETTORAUMFLÄCHE (NRF)

11.3 m²

GROSS INTERNAL AREA (CRREM)

TYP / ANLASS

Neubau, langlebig (>20 Jahre)

NUTZUNG

Bildungsbau

LEISTUNGSPHASE

LP9: Objektbetreuung

NUTZUNGSEINHEIT

Arbeitsplatz

ERWARTETE LEBENSDAUER

WELL-Score

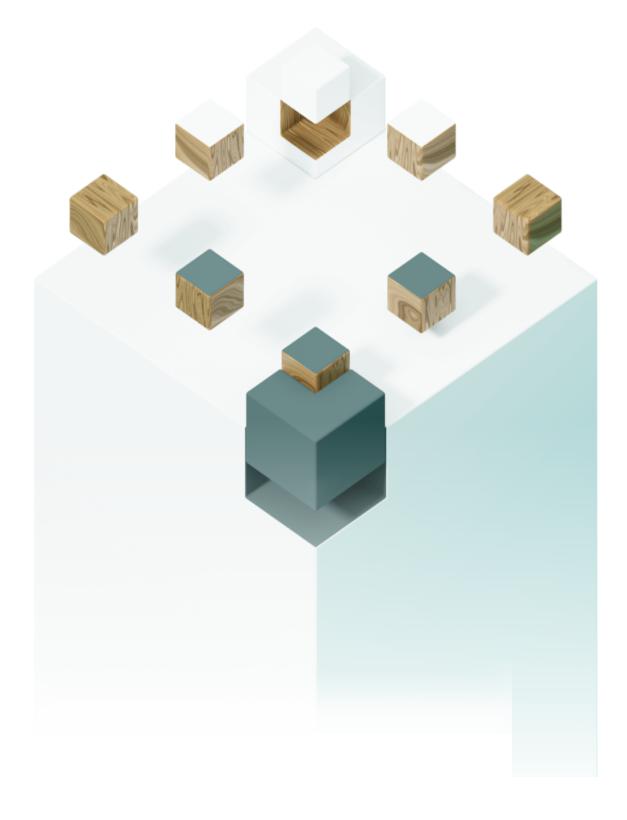
NEUE UND BESTANDSGEBÄUDE

Uncertified

NEUES UND BESTEHENDES INTERIEUR

Uncertified

KERN UND HÜLLE Uncertified


Bauherr

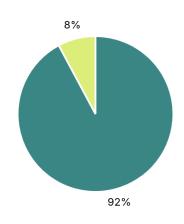

WoodenValley gGmbH

Quellenstraße 7a 70376 Stuttgart Deutschland

Quellinformationen

Quellinformationen

Quellen


Madaster präferiert ifc-Dateien zur Berechnung der Materialmengen. Dazu müssen die "Geometrien" des Objekts in die ifc-Export-Einstellungen aufgenommen werden. Madaster berechnet keine geometrischen Werte, alle Geometrien werden direkt aus dem ifc-Modell ausgelesen. Den Elementen des Objekts müssen jeweils Materialangaben sowie eine Klassifzierung (z. B. Kostengruppen nach DIN 276) zugewiesen worden sein. Auf der Madaster-Plattform wird die Vollständigkeit dieser Angaben unter "Qualität der Quelldatei" angezeigt. Alle Berechnungen auf der Madaster-Plattform werden auf Grundlage der Informationen des ifc-Exports durchgeführt. Jede fehlende, unvollständige oder falsche Information in der Quelldatei führt unmittelbar zu ungenauen beziehungsweise falschen Ergebnissen. Madaster übernimmt daher keine Garantie für die Qualität der Ergebnisse. Als alternative Quelldatei kann eine Microsoft Excel-Datei basierend auf einer Madaster Excel-Vorlage importiert werden, die Geometrien, Materialien sowie Klassifizierungscodes zu den jeweiligen Bauteilen und Elementen des Objekts enthält.

Aktive Quelldateien

Name	Klassifizierungsmethode	Exportdatum
Wood.ii 2_Madaster_LCA_TGA_20250724.xlsx	DIN 276:2018-12	24.7.2025
Woodii 2_LCA_20250724.ifc	DIN 276:2018-12	24.7.2025

Verwendete Material- und Produktdatenbanken

Vollständigkeit der Quellangaben

13

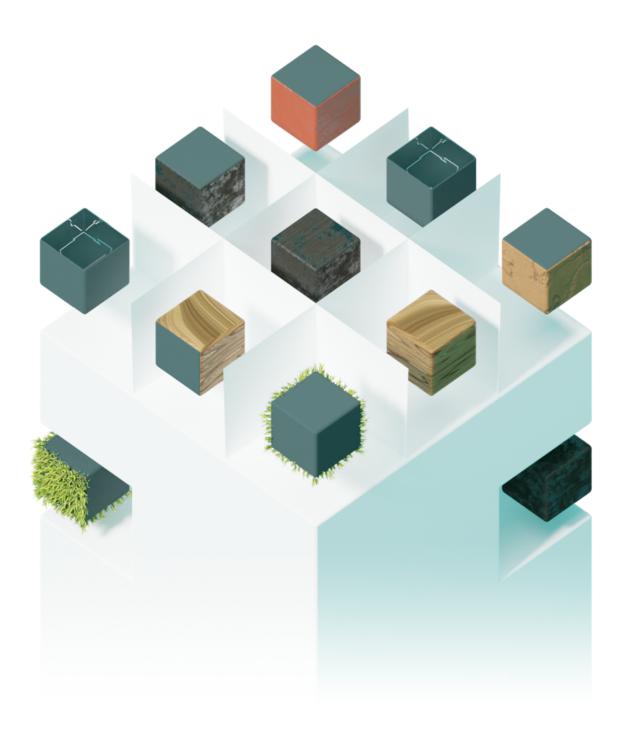
(3,6%)

Elemente mit fehlender Verknüpfung

Z /o.e.:

(0,5%)

Elemente mit unbekannter Gebäudeschicht


11

(3%)

Elemente mit unzureichenden geometrischen Angaben

Objekt im Detail

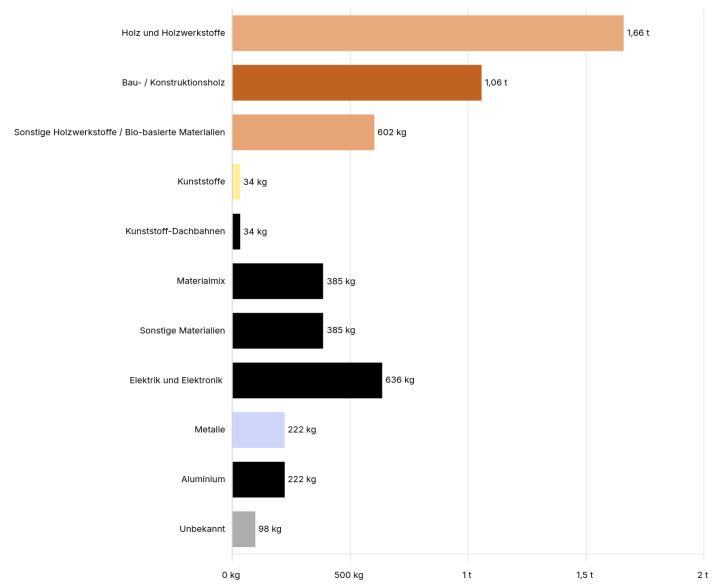
wood.ii #2 (Stuttgart, 2025)

Masse

Die Gesamtmasse und die Materialintensität (Masse/m²) geben eine Übersicht, welche und wie viele Materialien in dem betrachteten Objekt verbaut sind. Das Ziel ist eine bewusste und effektive Ressourcennutzung.

Performance_CircularitySorting_Mass

3,03 t

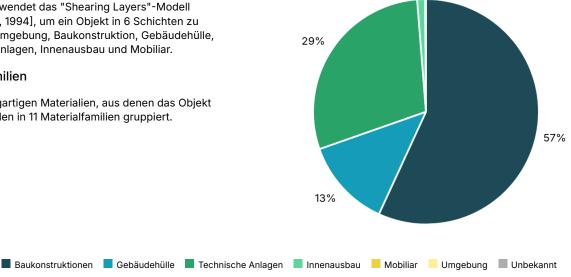

Performance_Mass_PerM2

 $198_{\text{kg/m}^2}$

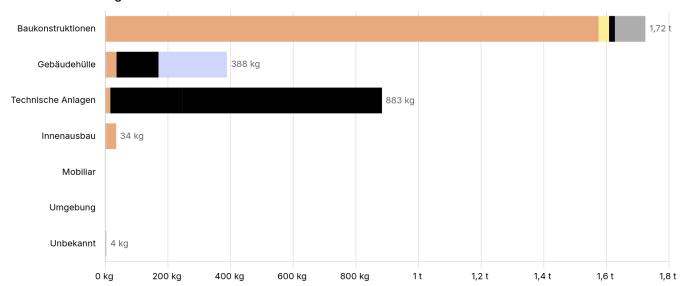
Baumaterialien

Das Objekt besteht aus Materialien, gruppiert in die folgenden Materialfamilien.

Materialfamilien


Masse nach Gebäudeschichten

Gebäudeschichten


Madaster verwendet das "Shearing Layers"-Modell [Duffy, Brand, 1994], um ein Objekt in 6 Schichten zu unterteilen: Umgebung, Baukonstruktion, Gebäudehülle, Technische Anlagen, Innenausbau und Mobiliar.

Materialfamilien

Die 351 einzigartigen Materialien, aus denen das Objekt besteht, wurden in 11 Materialfamilien gruppiert.

Zusammensetzung Gebäudeschicht

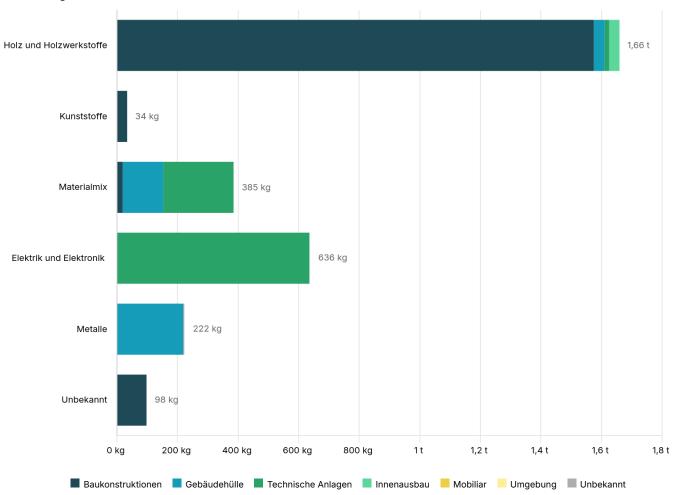
Holz und Holzwerkstoffe

Kunststoffe

Materialmix

Elektrik und Elektronik

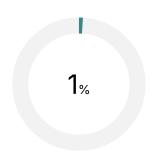
Metalle


Unbekannt

Masse nach Materialfamilien

Materialfamilien 7% 4 Holz und Holzwerkstoffe Kunststoffe Materialmix Elektrik und Elektronik Metalle Unbekannt

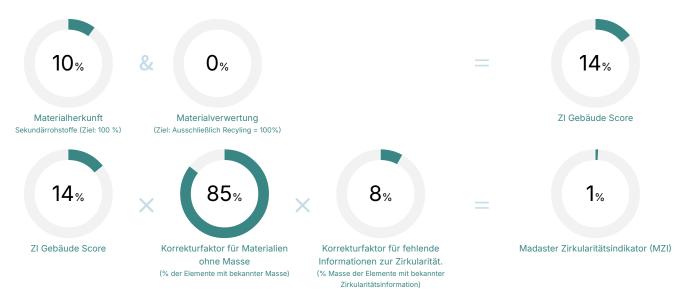
Zuordnung der Materialfamilien nach Gebäudeschichten



wood.ii #2 (Stuttgart, 2025)

Details zur Masse

Materialfamilie	Summe	Baukonstruktione	n Gebäudehülle	Technische Anlagen	Innenausbau	Mobiliar	Umgebung	Unbekannt
Holz und Holzwerkstoffe	54,7 %	51,9 %	1,2 %	0,5 %	1,1 %	0 %	0 %	0 %
	1,66 t	1,57 t	35 kg	15 kg	34 kg	0 kg	0 kg	0 kg
Bau- / Konstruktionsholz	34,9 %	33,2 %	1,2 %	0,5 %	0 %	0 %	0 %	0 %
	1,06 t	1,01 t	35 kg	15 kg	0 kg	0 kg	0 kg	0 kg
Sonstige Holzwerkstoffe / Bio-basierte	19,9 %	18,7 %	0 %	0 %	1,1 %	0 %	0 %	0 %
Materialien	602 kg	568 kg	0 kg	0 kg	34 kg	0 kg	0 kg	0 kg
Kunststoffe	1,1 %	1,1 %	0 %	0 %	0 %	0 %	0 %	0 %
	34 kg	34 kg	0 kg	0 kg	0 kg	0 kg	0 kg	0 kg
Kunststoff-Dachbahnen	1,1 %	1,1 %	0 %	0 %	0 %	0 %	0 %	0 %
	34 kg	34 kg	0 kg	0 kg	0 kg	0 kg	0 kg	0 kg
Materialmix	12,7 %	0,6 %	4,4 %	7,7 %	0 %	0 %	0 %	0 %
	385 kg	19 kg	134 kg	232 kg	0 kg	0 kg	0 kg	0 kg
Sonstige Materialien	12,7 %	0,6 %	4,4 %	7,7 %	0 %	0 %	0 %	0 %
	385 kg	19 kg	134 kg	232 kg	0 kg	0 kg	0 kg	0 kg
Elektrik und Elektronik	21 %	0 %	0 %	21 %	0 %	0 %	0 %	0 %
	636 kg	0 kg	0 kg	636 kg	0 kg	0 kg	0 kg	0 kg
Metalle	7,3 %	0 %	7,2 %	0 %	0 %	0 %	0 %	0,1 %
	222 kg	0 kg	218 kg	0 kg	0 kg	0 kg	0 kg	4 kg
Aluminium	7,3 %	0 %	7,2 %	0 %	0 %	0 %	0 %	0,1 %
	222 kg	0 kg	218 kg	0 kg	0 kg	0 kg	0 kg	4 kg
Unbekannt	3,2 %	3,2 %	0 %	0 %	0 %	0 %	0 %	0 %
	98 kg	98 kg	0 kg	0 kg	0 kg	0 kg	0 kg	0 kg


Zirkularität berücksichtigt den Anteil der beim Bau verwendeten Sekundärrohstoffe sowie das Potenzial aller verwendeten Rohstoffe für die Wiederverwendung oder das Recycling am Ende der Nutzungsdauer.

Madaster Zirkularitätsindikator (MZI)

Der Madaster Zirkularitätsindikator (MZI) bewertet die Kreislauffähigkeit eines Objekts auf der Basis von zwei Aspekten: 1. Materialherkunft und 2. Materialverwertung am Ende ihrer Nutzungsdauer. Ein Objekt mit einer hohen Punktzahl ist aus wiederverwendeten und recycelten Materialien gebaut und hat ein hohes Potenzial bezüglich der Wiederverwendung bzw. des Recyclings der Materialien. Ein vollständig kreislauffähiges Objekt hat eine Punktzahl von 100 %. Der MZI basiert auf dem Material Circularity Indicator, welcher von der Ellen MacArthur Foundation entwickelt wurde. Der Madaster Zirkularitätsindikator befindet sich in der Entwicklung und unterliegt ständigen Änderungen, da die Zuverlässigkeit der für die Berechnung verwendeten Daten zunimmt.

MZI Berechnungskomponenten

MZI nach Gebäudeschicht

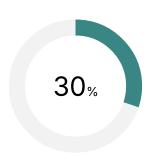
	Unbekannt	Baukonstruktionen Gebäudehülle	Technische Anlagen	Innenausbau	Mobiliar	Umgebung
Madaster Zirkularitätsindikator (MZI)		2%	0%			
ZI Gebäude Score		15%	10%			
Punktzahlen nach Gebäudeschichten						
Materialherkunft Sekundärrohstoffe (Ziel: 100 %)	-	10% -	0%	-	-	-
Materialverwertung (Ziel: Ausschließlich Recyling = 100%)	-	0% -	0%	-	-	-

wood.ii #2 (Stuttgart, 2025)

Materialherkunft

	Unbekannt	Baukonstruktioner	Gebäudehülle	Technische Anlagen	Innenausbau	Mobiliar	Umgebung
Sekundärrohstoffe (Ziel: 100 %)	-	10% 23 kg	-	0% 0 kg	-	-	-
Masse des Produkts (t)	0 kg	222 kg	0 kg	15 kg	0 kg	0 kg	0 kg
Zusammensetzung der Masse							
Eingesetzte recycelte Materialien (% der Masse)	-	0% 0 kg	-	0% 0 kg	-	-	-
Eingesetzte nachwachsende, nachhaltig produzierte Materialien (% der Masse)	-	0% 0 kg	-	0% 0 kg	-	-	-
Eingesetzte wiederverwendete Komponenten (% der Masse)	-	10% 23 kg	-	0% 0 kg	-	-	-
Recycling							
% Effizienz des Recyclingprozesses der Primärrohstoffe	-	0%	-	0%	-	-	-
Abfallmasse, die beim Recycling entsteht (t)	-	0 kg	-	0 kg	-	-	-

Materialverwertung


	Unbekannt	Baukonstruktione	n Gebäudehülle	Technische Anlagen	Innenausbau	Mobiliar	Umgebung
(Ziel: Ausschließlich Recyling = 100%)	-	0%	-	0%	-	-	-
Masse des Produkts (t)	0 kg	222 kg	0 kg	15 kg	0 kg	0 kg	0 kg
Zusammensetzung der Masse							
Komponenten, die zum Recycling gesammelt werden (% der Masse)	-	0% 0 kg	-	0% 0 kg	-	-	-
Komponenten, die zur Wiederverwendung gesammelt werden (% der Masse)	-	0% 0 kg	-	0% 0 kg	-	-	-
Masse an potenzieller Deponierung & Energieverbrennung (t)	-	222 kg	-	15 kg	-	-	-
Recycling							
Effizienz des Recyclingprozesses für die End-of-Life-Phase (%)	-	0%	-	0%	-	-	-
Masse der potenziellen Deponie- und Energieverbrennung des Recyclingprozesses (t)	-	0 kg	-	0 kg	-	-	-

wood.ii #2 (Stuttgart, 2025)

Demontierbarkeit

Die Demontierbarkeit gibt an, inwieweit Materialien und Produkte getrennt werden können, ohne beschädigt zu werden.

Demontierbarkeitsindex

Der Demontierbarkeitsindex wird nach der vom Dutch Green Building Council beschriebenen Methodik berechnet. Die Berechnung erfolgt für alle Elemente, die mit Produkten verknüpft sind, für die vollständige Informationen zur Demontierbarkeit vorliegen. Jedes Produkt wird anhand der Verbindungsart, der Zugänglichkeit der Verbindung, der Kreuzungen und der Produktkanten bewertet. Die Masse der betreffenden Elemente wird als Gewichtungsfaktor verwendet.

Indexqualität

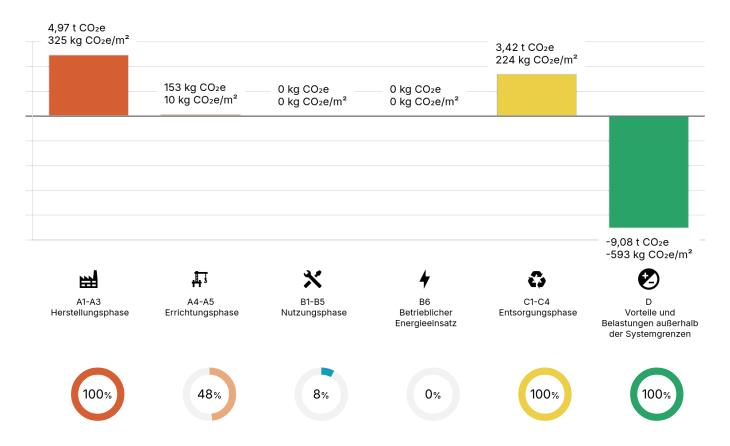
Die Indexqualität gibt die Anzahl der Elemente an, bei denen die Informationen zur Demontierbarkeit vorliegen, im Verhältnis zur Gesamtzahl der Elemente des Objekts (in den betreffenden Gebäudeschichten).

Demontierbarkeit

	Baukonstruktione	n Gebäudehülle	Technische Anlagen	Innenausbau	Mobiliar	Umgebung
Demontierbarkeitsindex	30%	0%	0%	0%	0%	0%
Indexqualität	3%	0%	0%	0%	-%	-%

Umwelt

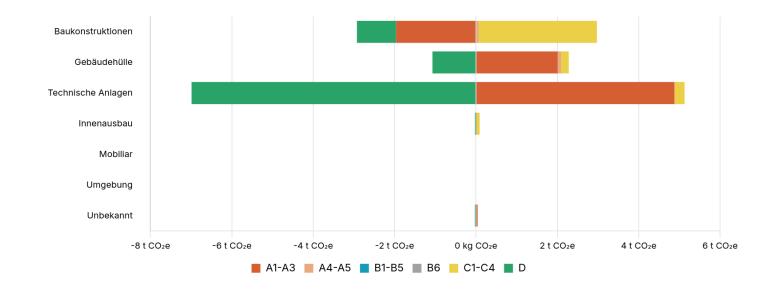
Die gesamte Umweltbelastung für A1-A3 (EN 15978 A2).


Lebenszyklusanalyse (LCA)

 $4,97_{~t\,co_2e}$

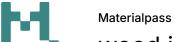

 $325 _{\text{kg CO}_2\text{e/m}^2}$

Eine Lebenszyklusanalyse (LCA) betrachtet die Umweltauswirkungen eines Objekts während des Lebenszyklus. Ein Lebenszyklus wird durch die folgenden Phasen definiert: die Herstellung von Bauprodukten (A1-A3), der Prozess der Errichtung (A4-A5), die Nutzung (B1-B5), die Demontage (C1-C4) und das Recyclingpotenzial eines Objekts nach der Demontage (D).


Global Warming Potential (GWP total) über den gesamten Lebenszyklus des Objekts

Bekannte Objektmasse mit Global Warming Potential (GWP total) Daten

Global Warming Potential (GWP total) nach Gebäudeschichten



	Baukonstruktionen	Gebäudehülle	Technische Anlagen	Innenausbau	Mobiliar	Umgebung	Unbekannt
A1-A3	-1,96 t CO ₂ e	2,01 t CO ₂ e	4,88 t CO ₂ e	8 kg CO ₂ e	-	-	41 kg CO ₂ e
A4-A5	62 kg CO ₂ e	86 kg CO ₂ e	5 kg CO ₂ e	-	-	-	-
■ B1-B5	-	-	-	-	-	-	-
■ B6	-	-	-	-	-	-	-
C1-C4	2,91 t CO ₂ e	186 kg CO ₂ e	243 kg CO ₂ e	81 kg CO ₂ e	-	-	16 g CO ₂ e
D	-963 kg CO ₂ e	-1,07 t CO ₂ e	-6,99 t CO ₂ e	-27 kg CO ₂ e	-	-	-28 kg CO ₂ e

Finanziell

Rohstoff-Restwert

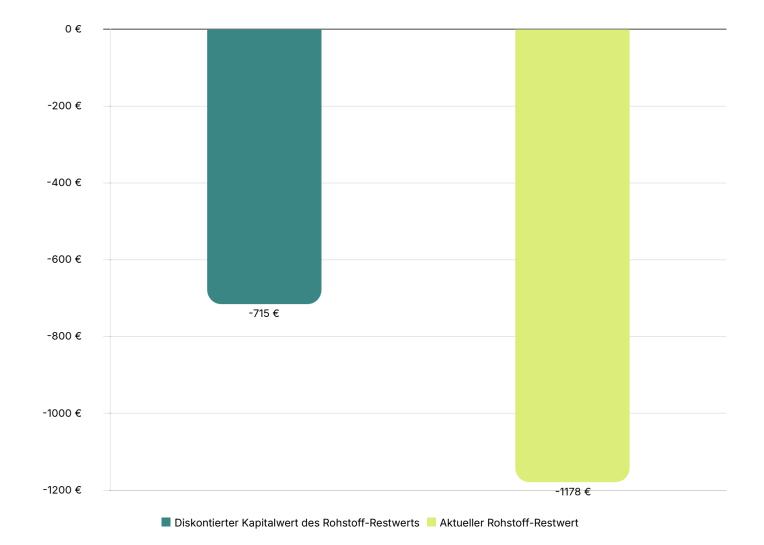
Der Rohstoff-Restwert misst den zukünftigen Geldwert der Materialien unter Berücksichtigung der Kosten für Rückbau, Transport und Aufarbeitung.

Diskontierter Kapitalwert des Rohstoff-Restwerts

-715 €

-47 €/m²

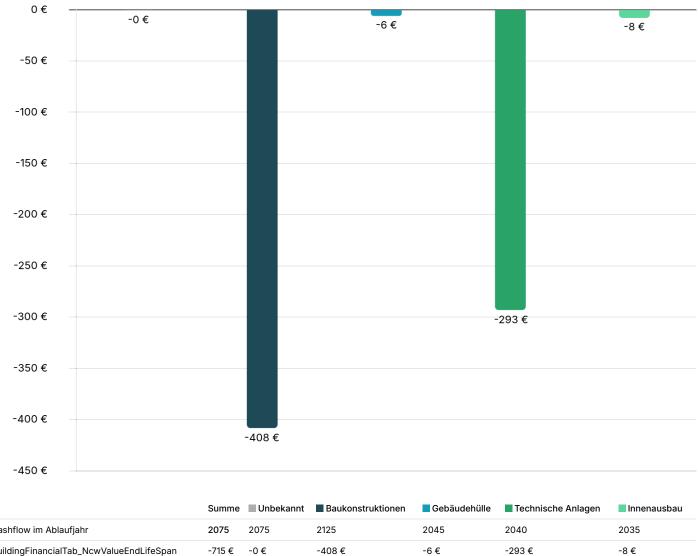
Aktueller Rohstoff-Restwert


-1178 €

-77 €/m²

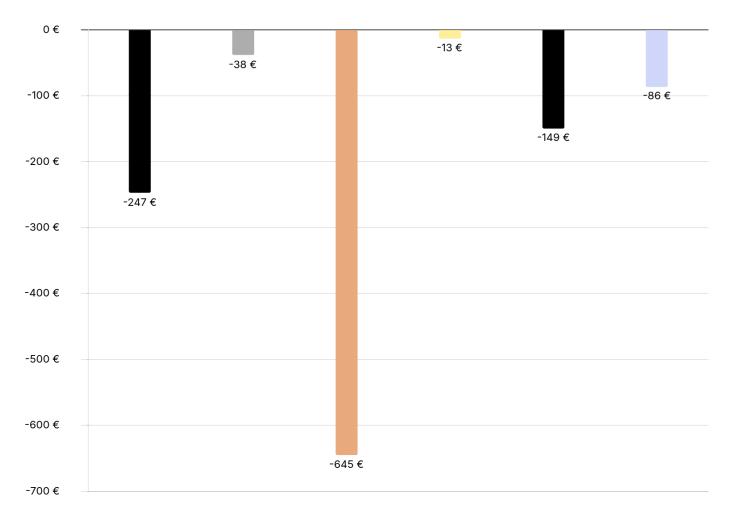
Madaster-Finanzmodul

Das Madaster Finanzmodul wurde entwickelt, um den Rohstoff-Restwert von Objekten zu kalkulieren. Es visualisiert den Wert der Materialien und Produkte zum Zeitpunkt des Baus und am Ende der Lebensdauer des Objekts.


Rohstoff-Restwert

Rohstoff-Restwert

Diskontierter Kapitalwert des Rohstoff-Restwerts am Ende der Lebensdauer nach Gebäudeschichten



	Summe	Unbekannt	Baukonstruktionen	Gebaudenulle	lechnische Anlagen	Innenausbau
Cashflow im Ablaufjahr	2075	2075	2125	2045	2040	2035
BuildingFinancialTab_NcwValueEndLifeSpan	-715 €	-0€	-408 €	-6 €	-293 €	-8 €

wood.ii #2 (Stuttgart, 2025)

Aktueller Rohstoff-Restwert nach Materialfamilien

Materialfamilien	Menge	Aktueller Rohstoff-Restwert
Elektrik und Elektronik	636 kg	-247 €
Unbekannt	98 kg	-38 €
Holz und Holzwerkstoffe	1,66 t	-645 €
Kunststoffe	34 kg	-13 €
Materialmix	385 kg	-149 €
Metalle	222 kg	-86 €